Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhifang Yu,* Jianwei Sun, Bing Zhao, Xiuyan Gu and Zhongzhen Tian

Department of Chemistry, Tianjin University, Tianjin 300072, People's Repulic of China

Correspondence e-mail:
zhifang@public.tpt.tj.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.048$
$w R$ factor $=0.145$
Data-to-parameter ratio $=12.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Hydroxy-3-(3-hydroxyphenyl)-1-phenyl-propan-1-one

The title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$, was synthesized by a Reformatsky reaction in an aqueous medium. The two aromatic rings are approximately orthogonal. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are formed between the carbonyl and hydroxyl groups. The hydroxyl group in the central chain is disordered over two sites.

Comment

We have researched the Reformatsky reaction (Bieber et al., 1997) of α-haloketones in an aqueous medium (Chan et al., 1994; Shen et al., 1997). A new compound has been synthesized by the reaction of 2-bromoacetophenone with 3hydroxybenzaldehyde in the presence of zinc in an aqueous system (Yu et al., 2003).

(I)

The molecular structure of the title compound, (I), is illustrated in Fig. 1. The two aromatic rings are approximately orthogonal, forming a dihedral angle of $80.7(1)^{\circ}$. The angle $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$ is $119.1(2)^{\circ}$, indicating that atom C 7 is $s p^{2}$ hybridized. The torsion angle $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$ is $-165.5(2)^{\circ}$, indicating these atoms are almost coplanar.

Experimental

3-Hydroxybenzaldehyde (3 mmol) and 2-bromoacetophenone $(4.5 \mathrm{mmol})$ were added to a mixture of zinc (12 mmol), ammonium chloride (1.5 g), a trace amount of iodine, cetyltrimethylammonium bromide $(0.005 \mathrm{~g})$ and tetrahydrofuran $(1 \mathrm{ml})$ in a saturated solution of calcium chloride $(12 \mathrm{ml})$. The mixture was stirred at room temperature for 8 h and extracted with diethyl ether, evaporated and separated by flash chromatography (ethyl acetate-petroleum ether). A yellow powder was obtained (yield 53%) and single crystals (m.p. 377-378 K) suitable for crystallographic analysis were obtained by slow evaporation of an ethyl acetate-petroleum ether solution. Spectroscopic analyses, IR $\left[\mathrm{KBr}, v\left(\mathrm{~cm}^{-1}\right)\right]: 3333,1676 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): 87.95-6.93(m, 9 \mathrm{H}), 5.28(t, 1 \mathrm{H}), 3.35(d, 2 \mathrm{H}), 2.02(s, 1 \mathrm{H})$. Elemental analysis, required for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3}$: C $74.38, \mathrm{H} 5.79 \%$; found: C 74.35, H 5.74\%.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{3} \\
& M_{r}=242.26 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=14.251(5) \AA \\
& b=9.984(3) \AA \\
& c=8.994(3) \AA \\
& \beta=105.305(5)^{\circ} \AA \\
& V=1234.3(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 17 March 2004
Accepted 2 June 2004
Online 12 June 2004

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
6168 measured reflections
2173 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0648 P)^{2}\right.$ $+0.3761 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e} \mathrm{A}^{-3}$
$S=0.99$
2173 reflections
176 parameters
H -atom parameters constrained

1313 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.035$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-16 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-9 \rightarrow 10$

Table 1

Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.216(3)$	$\mathrm{C} 9-\mathrm{O} 2$	$1.477(3)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.374(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.506(4)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 10$	$108.9(2)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$120.4(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$120.6(2)$		
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$-165.5(2)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 10$	$179.9(2)$
$\mathrm{O} 2-\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$63.0(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.15	$2.960(3)$	171
$\mathrm{O}^{\mathrm{B}}-\mathrm{H} 3 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	2.03	$2.818(3)$	161

Symmetry code: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

All H atoms were located in a difference Fourier map and were refined as riding $\left[\mathrm{O}-\mathrm{H}=0.82 \AA\right.$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA ; U_{\text {iso }}=1.0$ (disordered atoms) or $1.5 U_{\mathrm{eq}}(\mathrm{O})$ and $\left.1.2 U_{\mathrm{eq}}(\mathrm{C})\right]$. The torsion angles about the $\mathrm{C}-\mathrm{O}$ bond of the hydroxyl groups were refined. The hydroxyl group attached to atom C9 is disordered over two sites [occupancies 0.72 (4) and 0.28 (4)].

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Only the major occupied site of the disordered hydroxyl group is shown.

Data collection: $S M A R T$ (Bruker, 1997); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors thank the State Key Laboratory of ElementoOrganic Chemistry, Nankai University. This research was supported by the Visiting Scholar Foundation of the Key Laboratory of Tianjin University. The work was also supported by the ' 985 ' Project of Tianjin University.

References

Bieber, L. W., Malvestiti, I. \& Storch, E. C. (1997). J. Org. Chem. 62, 90619064.

Bruker (1997). SMART, SAINT and SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, T. H., Li, C. J. \& Lee, M. C. (1994). Can. J. Chem. 72, 1181-1192.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shen, Z., Zhang, J. Q., Zou, H. X. \& Yan, M. M. (1997). Tetrahedron Lett. 38, 2733-2736.
Yu, Z. F., Zhao, B.,Tian, Z. Z. \& Gu. X. Y. (2003). Acta Cryst. E59, o2020o2021.

